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The Schrrdinger (as opposed to the Cooper or BCS-gap) equation is solved 
without approximation in momentum space for the BCS interaction model to 
obtain the quantum bound-state spectrum of an isolated pair of fermions in one, 
two, and three dimensions. Regardless of dimensionality, there is never more 
than a single bound state (in analogy with the nucleon-nucleon interaction), but 
a threshold value of the potential strength is needed to support this state in any 
dimension. For very low densities one recovers previously known formulas for 
two and three dimensions which are consistent in this limit with the more familiar 
properties of quantum binding for simple, purely attractive wells. Results are 
illustrated for typical conventional, cuprate, and superconducting semiconductors 
having controversially low cartier densities. 

1. I N T R O D U C T I O N  

It is wel l  known  from e lementary  quan tum mechanics  that the ground-  
state energy E o f  a part icle  o f  mass  m in an attractive,  rec tangular  1D wel l  
o f  depth  Vo and range a can be expanded  about  smal l  Voa 2 as 

2ma2V 2 
E > - -  + O(V3o). (1D) (1) 

Voa2~0 h 2 

Similar ly,  in the case  o f  a spherical  3D wel l  o f  depth  V0 and radius  a, an 
expans ion  o f  the ground-s ta te  energy about  smal l  -q ------- Vo a2 - h2ar2/8m gives  

m3,l 2 
E ~ - - -  + O(~q 3) (3D) (2) 

rl~0 2/~,2~ 2 

Specif ical ly ,  in one d imens ion  there is a lways  a bound  state no mat ter  how 
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shallow and/or short-ranged the well, whereas in three dimensions a critical 
value h21r2/8m is needed for Voa 2 for the well to bind the first state. Clearly 
(1) and (2) are both perturbative expansions in an appropriate "smallness" 
parameter. Also, a 2D circularly symmetric well of depth V0 and radius a 
always supports a bound state no matter how shallow and/or short-ranged 
the well. However, this case is nonperturbative (Landau and Lifshitz, 1977, 
p. 163) and gives 

ha ( 2h ) 
E ) - 2 - ~ a  2 exp m-~oa~ (21)) (3) V0a2-.~O 

i.e., the bound-state energy has an "essential singularity" in Voa 2. 
It is also well known from the quantum theory of many-particle systems 

that the BCS (Fetter and Walecka, 1971) many-fermion theory for any (S- 
wave) pair interaction VkZ (in any dimensionality D) given by 

Vkk' -- L -~  f d~ I dDr ' e-'l"rV(r, r ')e ik''r' (4) 
;L D ) L  o 

implies the (at worst numerical) solution of the nonlinear gap equation 

Ak = - - ~  Vkk'W(1 -- ~,)1/2 (5) 
k' 

to be carded out self-consistently (Labbd et al., 1967) with that of the number 
(of particles) equation 

N = 2 ~ ~ (6) 
k 

In (4) L is the system length, and the BCS-Bogoliubov-Valatin (Fetter and 
Walecka, 1971) transformation coefficients Vk in (5) and (6) are given by 

1 
= ~ (1 - ~klek) (7) 

where Ek are the quasifermion (bogolon) energies 

Ek = (62 + A~) uz (8) 

while ~k is the kinetic energy ek -- h2k2/2m relative to the chemical potential 
Ix, namely 

~k =--- ~k -- Ix (9) 

It was recognized by Leggett (1980) and further clarified by Nozi~res and 
Schmitt-Rink (1985) that, if Ad2Ek ----- Oh, the BCS gap equation (5) at low 
density readily reduces in leading order to 
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(hZk2/m - 2~)+k = ~ Va,~k, (I0) 
k' 

This is just the Schrrdinger equation for an isolated pair of fermions, with 
2~ playing the role of the pair eigenvalue energy. This remarkable result 
holds in any dimension and for any interaction Vkk', and suggests two extreme 
many-body regimes: the high-density limit characterized by large, overlap- 
ping, weakly coupled Cooper pairs, which one may call the BCS regime, and 
the low-density limit (10) consisting of an ideal gas of small, well-separated, 
strongly coupled boson pair clusters that one may call the Bose regime 
(Rabinowitz, 1994). The BCS-Bose gas problem in one dimension has been 
studied numerically for an exactly soluble many-fermion system (Quick et 
al., 1993; Casas et al., 1994a). 

A specific investigation in two dimensions of the "crossover problem" 
has been carried out independently by Miyake (1983) and by Randeria, 
Duan, and Shieh (1990) (MRDS scheme), who consider any pair interaction 
describable by an S-wave scattering length. They solve analytically both the 
gap (5) and number (6) equations simultaneously, with V~, replaced by the 
infinitely summed Tkk, matrix which in turn is related to the S-wave scattering 
length, and arrive at the two key results 

A = [2EFEo(2)] l/z (11) 

1 
ix = EF - ~ E0(2) (12) 

where Eo(2) is the (positive) binding energy of the first two-body bound state 
and EF = hZk~/2m is the Fermi energy. The root-mean-square radius of a 
fermionic pair in the BCS condensate can be deduced analytically (Miyake, 
1983; Randeria et al., 1990) as a closed expression as a function of both A 
and p~. In fact, this can also be accomplished (Casas et aL, 1994b) in one 
and three dimensions as well. Indeed, in two dimensions, using (11) and 
(12), the root-mean-square radius can be simplified from a function of the 
two quantities A and p~ to a function of only one variable Eo(2)/EF. This fact 
suggests that the quantity E0(2) might be more useful to have available than, 
say, the pair interaction coupling strength itself, and constitutes the prime 
motivation for the present study of the familiar "bare" BCS model interaction 
within the context not of the BCS gap equation, nor even of the simpler Cooper 
pair equation, but rather within the framework of the Schrrdinger equation. 

2. BCS MODEL INTERACTION POTENTIAL 

In the original many-fermion BCS theory, pairing in D dimensions 
emerges from a two-electron Cooper equation with an attractive electron- 
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phonon interaction that overwhelms the repulsive electron-electron Coulomb 
interaction. This competition is succinctly mimicked in momentum space by 
the celebrated interaction model 

= [ ~ V  if max(0, E F - hOOD) < ek, ek' < EF + htOD (13) Vk~, ( u  otherwise, 

where V is a positive coupling constant, ek -- h 2k2/2m, and hOOD is usually 
[but not necessarily (Takada, 1993)] the ionic-crystal Debye energy. The 
lower limit in (13) is needed to accommodate the very low density (EF ---) 
0) limit to be discussed below. 

In the BCS many-body treatment (Fetter and Walecka, 1971) using the 
pair potential model (13) the dimensionless coupling constant is g(EF)V, where 
g(EF) is the density of electronic states at the Fermi energy EF. Specifically, 

g(~) -- (L/2q-r)o dOk/de 

and becomes LmU21wh(2~) v2 in one dimension, LZm/27rh 2 in two dimensions, 
and L3(m3e)u214c2'rrZh 3 in three dimensions, if ~ -- hZkZ/2m. Using these 
results and the fact that p --- NIL ~ we see that 

I Lm 2mN V 
V -- ~ ~ (1D) (14) 

mN V 
g(EF)V = 2 - ~  P (2D) (15) 

mkF L3 m(37r2)l/3N V 
2.rr2h 2 V - 2.tr2h 2 p2/3 (3D) (16) 

The fact that coupling V and density p scale reciprocally in any D means 
that the "many-body dynamics" arising from the BCS pair interaction is 
similar to that of the 3D "jellium" model of the electron gas, in that low 
(high) particle density is equivalent to strong (weak) coupling, in contradiction 
to a system of many, say, argon atoms, or many helium atoms, or nuclear 
matter, etc. In "jellium" the dimensionless perturbation parameter is the 
familiar 

rs = ro/ao = (3p/4w)l/3/(h2/me 2) cc e2/p 1/3 

where r0 is an average interelectronic spacing and ao = h2/me 2 the first 
Bohr radius. 

We now proceed to find the bound-state levels of the SchrOdinger equa- 
tion in momentum space 
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[hZk2/m + Eo(2)]t~k = ~ V~,O~, (17) 
k' 

for the "bare" BCS model interaction (13), in D = 1, 2, and 3 dimensions, 
where, as before, E0(2) is the (positive) binding energy of an (isolated) pair 
of fermions each of mass m. The potential (13) is nonlocal in momentum 
space, and consequently also in real space. The summation in (17) is best 
performed as an integral over energy ~ through the density of states. We note 
in passing that provided only pair clusters are allowed to survive at low 
density, (10) becomes (17), as one may then put 2p~ = -E0(2); this situation 
does not occur in many other many-body assemblies, e.g., nuclear matter, 
where in addition to deuterons surviving at low density one also expects 
alphas and even larger clusters. 

3. Q U A N T U M  BINDING OF THE BARE BCS I N T E R A C T I O N  

Letting Eo(2) ---- h2K2]m with K real, we can manipulate (17) with (13) 
to yield the integral eigenvalue equation 

f 
EF+~o'D g(~) 

1 = V de 
Jr~ax~0, eF-~,~O) 2~ + h2KZ/m 

(18) 

The resulting integrals can be done analytically in one, two, and three dimen- 
sions without approximation, giving the following dimensionless eigenvalue 
equations, where K = K/kF and v =- htoo/EF > 0: 

1 

g(EF) V 

-KI[ tan-l(l+v)~/2K tan-*0(1-v) (1-v)~ /2]K (1D) (19) 

1 [ l + v + K 2  ] 
In i1 - v)0-(i- "- v) + K ~ (2D) (20) 

(1 + v) 1/2 - 0(1 - v)(1 - v) 1/2 + K tan -l  

x O ( 1 - v ) ( 1 - v )  u2 ( l + v )  '/2] 
- K tan -1 (3D) (21) 

K 

This is the central core of this paper. In these three results, the Heaviside 
step function 0(x) ~ 1 if x > 0, and = 0 if x < 0, is used. In two and three 
dimensions the potential (13) is assumed to have no angular dependence and 
so acts only in the S-wave channel. 
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For v =- ho~olEF < 1, (19)-(21) have the limits 

1 

g(EF)V ~<<1 

(1 + v) u2 - (1 - v) I/z 
(1 - 1 /2)  

+ O(K 2) (1D) (22) 

l l n {  1 + v / \ / + o (  K 2) 

(1 "1- 1-') 1/2 - -  (1  - -  11) l/2 "4- O ( K  2) 

(2D) 

(3D) 

(23) 

(24) 

This in any dimension the leading term for small K is f in i te ,  and moreover 
tends to v + O(v 2) if v < <  1 regardless of dimensionality. Further, one 
readily confirms that the right-hand sides of (19)-(21) are all monotonic 
decreasing in 0 -< K < o~. Figure 1 displays the rhs of (19)-(21) for all three 

results. Surprisingly, these can be seen to coincide to within visual accuracy 
f o r  all  K for small enough values of v. The "cuprates" curve (in actual fact, 
three curves, one for each D) corresponds to v = 0.071 (Debye temperature 
of 300 K and carrier density of 102~ cm-3), while "conventional" refers to 
v = 0.015 (Debye temperature of 295 K and carrier density of 1022 cm-3). 
The inset in Fig. 1 is an amplified scale of the three "cuprates" curves of 
Fig. 1, and exhibits the numerically distinct limits (22)-(24) for K + 0. Since 
the lhs of (19)-(21) is a constant, a simple graphical solution for the allowed 

1 0  0 . . . .  , . . . .  I . . . .  ~ . . . .  I . . . .  

~176 'oupra.s 
1 0 - 1  o.oTlz - -  - -  ~ ~ ~ m 

10-2 o.oTto 

o.o~,o9 o o.ol o.~ o.o3 o.o4 

1 0 - 3  

I 0 - 4  

1 0 - 5  

conven~'ona|  

10-6 . . . .  t . . . .  = . . . .  i . . . .  i . . . .  
20 40 00 80 100 

K/kF 

Fig. L The rhs of" (19)-(2l) for values of v --= h~D/E ~ = 0.015 (typical of conventional 

superconductors as explained in the text) and 0.071 (for cuprate superconductors) .  Note that 
to within visual accuracy all three curves corresponding to one, two, and three dimensions 
coincide in both instances. Inset: Enlarged scale for cuprate case. 
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K in each case yields at most one intersection, and hence makes it evident 
that (a) a threshold value of V is required to bind the first level and (b) there 
is never more than one and only one bound state. These two characteristics, 
the first being peculiar but the second bizarre, appear to hold regardless of 
dimensionality, at least in one, two, or three dimensions, and contrast sharply 
with the familiar quantum binding properties of local, purely attractive poten- 
tials which in one and two dimensions always support a bound level [see (1) 
and (3)], no matter how weak (shallow and/or short-ranged) the potential, 
while in three dimensions a threshold "strength" (potential depth and/or range) 
is required to bind the first level [see (2)]. 

These expected, familiar characteristics of ordinary quantum wells re- 
emerge in the BCS interaction model in the true low (Yakada, 1993; Eagles 
et al., 1989) (but still nonzero) density limit p ~ 0, which lies in the parameter 
region v =-- hoD/EF > 1 since density p ~ ,/E--FF, EF, and E3/2 in one, two,and 
three dimensions, respectively. The result follows directly from (19)-(2 l ) - -  
rather than from (22)-(24)--with each (1 - v) term deleted since the Heavi- 
side step function is zero if v > 1. Namely, 

1 
) 

g( EF) V ~-~o 

' iT 
+ 0(1) (1D) 

l ln(1  + v~ 2 k ~ } + O(KZ) (2D) 

(1 + v) 1/2 + O(K) (3D) 

(25) 

(26) 

(27) 

The rhs of (19)-(21) are graphed in Fig. 2 for a particular (large) value of 
v = 3059 appropriate to the superconducting semiconductor (SCsc) Zr-doped 
SrTiO3 discussed by Eagles et al. (1989), who estimated this material to have 
an optical intervalley phonon characteristic temperature htoD/kB of 580 K, 
with kB the Boltzmann constant, and a (indeed very low) carrier density of 
approximately just 1015 cm -3. 

Since the rhs of (25)-(27) diverge as K -- K/kF ~ 0 only for one and 
two dimensions, while being a finite constant for three dimensions, the 
familiar quantum binding properties, mentioned before as associated with 
ordinary, purely attractive potential wells in one, two, and three dimensions, 
reemerge from the fact that (19)-(21) can be rewritten explicitly in terms of 
coupling V and density p, since 

1 f O(p2/K) (1D) (28) 
- -  - - . _ ~  

V K~o O(ln[p/K2]) (2D) (29) 

O(91/311 + v] u2) (3D) (30) 
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Fig. 2. The rhs of (19)-(21) forv  --= htoJEF = 3059 [which makes 0(i - v) = 0], characterizing 
the superconducting semiconductor (SCsc) (Eagles et al., 1989) cited in the text. 

Here we have recalled the various forms for g(EF) cited before, as well 
as the fact that the wave number is K - KkF = [mEo(2)/h 2] 1/2, with E0(2) 
the two-body (positive) binding energy. Indeed, in two dimensions the K ---) 
0 limit in (26) gives the familiar essential-singularity-in-V structure (3) of 
the 2D-well binding energy, since (29) is equivalent to 

E0(2) > 2htooe -2/gv (2D) (31) 
v-.0 

In three dimensions, on the other hand, the K ~ 0 limit in (27) yields an 
expected critical (or threshold) value of V for the first bound state, and is 

q/2"rrZh3 (3D) (32) 
Vc - -  L3(m3ho~D) l l  2 

The limiting (low-density) results (31) and (32) were first obtained by Eagles 
(1969) [his equations (26) and (8), respectively]. 

Finally, we note that for the 1D attractive delta potential V(x) = ,  VoW(X) 
> 0, v0 > 0, used in Quick et al. (1993) to test BCS theory, (13) becomes 
the constant voK/L and hoJD ~ oo, while the lower limit in (13) is taken as 
0. Hence, in this limit (19) readily gives E0(2) --- h2K2/m = m ~ / 4 h  z, which 
is the well-known binding energy of the only quantum bound state supported 
by this potential well (Gasiorowicz, 1974). It is curious indeed that this latter 
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property is shared with the BCS model interaction as exhibited in this paper, 
as well as with newer pair interaction models to be discussed now. It is also 
the fundamental feature of the nucleon-nucleon force in nuclear physics. 

4. BEYOND THE BCS INTERACTION MODEL 

Simultaneous, self-consistent solution of the two coupled integral equa- 
tions (5) and (6) will in principle yield a chemical potential Ix which decreases, 
as coupling is increased, from the (positive) value EF to the negative value 
-~Eo(2) for low density/infinite coupling. This is explicitly seen in the 
particular case of two dimensions from equation (12). For negative Ix (which 
characterizes the "Bose regime"), however, the BCS model interaction (13), 
with EF replaced by ix, ceases to have meaning. Besides the MRDS interaction 
scheme (Miyake, 1983; Randeria et al., 1990), which is quite general, there 
are several specific simple pair interaction models, such as the 1D attractive 
delta model (Casas et al., 1991), which also permit access into the Bose 
regime. We mention the regularized 2D and 3D attractive delta interactions 
of Gosdzinsky and Tarrach ( 1991; Jackiw, 1991). These are limits of specially 
designed attractive rectangular wells which support a single bound state (of 
variable binding), and which in the limit yield an infinitesimally weak attrac- 
tive delta potential in either two or three dimensions. However, we found 
that the gap equation for these interaction models in two and three dimensions 
diverges and must somehow be regularized. 

5. CONCLUSIONS 

The BCS pair interaction model produces a dynamics in the correspond- 
ing many-fermion system which is analogous to that of "jellium," namely 
low (high) particle density is equivalent to strong (weak) coupling. The "bare" 
BCS pair interaction model potential supports one and only one bound state, 
in perfect analogy with the nucleon-nucleon pair interaction in nuclear phys- 
ics. As a model interaction, however, it does not access the region of negative 
chemical potential of importance in a BCS-Bose mean-field picture of super- 
conductivity, a shortcoming motivating the search for other interaction 
models. 
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